2x^2-(x+5)=7(x+3)

Simple and best practice solution for 2x^2-(x+5)=7(x+3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x^2-(x+5)=7(x+3) equation:



2x^2-(x+5)=7(x+3)
We move all terms to the left:
2x^2-(x+5)-(7(x+3))=0
We get rid of parentheses
2x^2-x-(7(x+3))-5=0
We calculate terms in parentheses: -(7(x+3)), so:
7(x+3)
We multiply parentheses
7x+21
Back to the equation:
-(7x+21)
We add all the numbers together, and all the variables
2x^2-1x-(7x+21)-5=0
We get rid of parentheses
2x^2-1x-7x-21-5=0
We add all the numbers together, and all the variables
2x^2-8x-26=0
a = 2; b = -8; c = -26;
Δ = b2-4ac
Δ = -82-4·2·(-26)
Δ = 272
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{272}=\sqrt{16*17}=\sqrt{16}*\sqrt{17}=4\sqrt{17}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-4\sqrt{17}}{2*2}=\frac{8-4\sqrt{17}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+4\sqrt{17}}{2*2}=\frac{8+4\sqrt{17}}{4} $

See similar equations:

| (5a/4)^2+62a+672=0 | | -y/4+11=-49 | | 99-14b=5b+63 | | 5v-3/4=-1/3 | | .24x+.42=1.74 | | 1.44x=11.52 | | 4m+6=-34 | | 9(3-e)-3(3e+1)=5 | | (5/4)a^2+62a+672=0 | | 5x+3=-107-9x | | 3n-1=3n-3 | | 5x-(7)=178 | | -2/3p-7=19 | | (5/4a^2)+62a+672=0 | | (n+4)^2=196 | | -2r+9=-17 | | t/3-1/2=5/6 | | 5/4a^2+62a+672=0 | | -25x+14=-86 | | 2^-x=5 | | 1^-x=1 | | 2(3-x)+55=139 | | ?x2+0.1=95.4 | | x+7=x+42 | | 2/5x-8=-14 | | 2p+9=19 | | 1y-1.5=5.32 | | 11-3x=13-5x | | 62=62+m | | 84=12u | | -16x^2+30x-5=0 | | -9c+3=39 |

Equations solver categories